Math 255A' Lecture 3 Notes

Daniel Raban

October 2, 2019

1 Brief Introduction to Banach Spaces

1.1 Seminorms and norms

We will denote X as a vector space over \mathbb{F} .

Definition 1.1. A seminorm on X is a function $p: X \to [0, \infty)$ such that

- 1. $p(x+y) \le p(x) + p(y)$
- 2. $p(\lambda x) = |\lambda| p(x)$ for all $x \in X, \lambda \in F$.

We call p a **norm** if $p(x) = 0 \implies x = 0$ (coercivity of p).

Remark 1.1. The second property implies p(0) = 0.

A norm has an associated metric d(x, y) = p(x - y).

Definition 1.2. If p is a norm, the pair (X, p) is called a **normed space**. If X is complete with respect to this metric, we call it a **Banach space**.

Proposition 1.1. In a normed space, addition and scalar multiplication are continuous.

Lemma 1.1. Let p, q be seminorms on X. The following are equivalent:

- 1. $p \leq q$
- 2. $\{x \in X: q(x) \leq 1\} \subseteq \{x \in X: p(x) \leq 1\}$
- 3. $\{x \in X : q(x) < 1\} \subseteq \{x \in X : p(x) < 1\}$
- 4. $\{x \in X : q(x) < 1\} \subseteq \{x \in X : p(x) \le 1\}$

Proof. (4) \implies (1): et $x \in X$ be such that $q(x) \leq a$. Let $\varepsilon > 0$ be arbitrary. Then

$$q\left(\frac{x}{a+\varepsilon}\right) \le \frac{a}{a+\varepsilon} < 1,$$

so $p(x/(a+\varepsilon)) \le 1$. This implies $p(x) \le a + \varepsilon$.

Proposition 1.2. For all $x, y \in X$, $|p(x) - p(y)| \le p(x - y)$.

Proof. The triangle inequality gives $p(x) \le p(y) + p(x-y)$, so $p(x) - p(y) \le p(x-y)$. Flip x and y to get the negative version.

Remark 1.2. This tells us that the norm in a normed space is Lipschitz.

Definition 1.3. Two norms are **equivalent** if they generate the same topology.

Proposition 1.3. $\|\cdot\|_1$ and $\|\cdot\|_2$ on X are equivalent if and only if there are constants c, C > 0 such that

$$c\|\cdot\|_1 \le \|\cdot\|_2 \le C\|\cdot\|_1$$
.

Proof. (\Leftarrow): Given these inequalities, consider $B^2(x,\varepsilon) = \{y \in X : ||y-x||_2 < \varepsilon\}$. This contains $B^1(x,\varepsilon/c)$. So the topology $\mathcal{T}_{\|\cdot\|_2}$ contains $\mathcal{T}_{\|\cdot\|_1}$. The other inequality gives the reverse inclusion.

 (\Longrightarrow) : Assume $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent. Consider $B^1(0,1)$. It must contain some $\|\cdot\|_2$ open neighborhood U of 0. So there is some $\varepsilon > 0$ such that $B^1(0,1) \supseteq B^2(0,\varepsilon)$. This tells you that $\|\cdot\|_1 \le (1/\varepsilon)\|\cdot\|_2$ by the lemma. We can do the reverse to get another inequality.

Definition 1.4. $(X, \|\cdot\|)$ and $(X', \|\cdot\|')$ are **isometric**¹ if there is a linear bijection $A: X \to X'$ such that $\|Ax\|' = \|x\|$ for all $x \in X$. They are **isomorphic** if $\|\cdot\|$ and $\|A(\cdot)\|'$ are equivalent.

1.2 Examples of Banach spaces

Example 1.1. Let X be a Hausdorff² topological space. Then let the space $C_b(X) = \{$ bounded continuous functions $X \to \mathbb{F} \}$ equipped with the **uniform/sup norm** $||f|| := \sup_{x \in X} |f(x)|$. Then $(C_b(X).||\cdot||)$ is a Banach space.

Example 1.2. If I is any set with the discrete topology, the previous example gives $C_b(I) = \ell^{\infty}(I) = \{(x_i)_{i \in I} \in \mathbb{F}^I : \sup_i |x_i| < \infty\}$. If $I = \mathbb{N}$, we call $\ell^{\infty}(\mathbb{N}) = \ell^{\infty}$.

Example 1.3. If X is locally compact, $C_0(X) = \{f \in C_b(X) : \forall \varepsilon > 0, \{|f| \ge \varepsilon\} \text{ is compact}\}$ is a closed subspace of $C_b(X)$. If X is compact, $C_b(X) = C_0(X) =: C(X)$.

We call
$$c_0 = C_0(\mathbb{N}) = \{(x_i)_i \in \mathbb{F}^{\mathbb{N}} : x_i \xrightarrow{i \to \infty} 0\}.$$

Example 1.4. Let $(X.\Sigma, \mu)$ be a measure space. Then $L^p(\mu)$ for $1 \le p \le \infty$ is a Banach space with the norm $||f||_p = (\int |f|^p)^{1/p}$ if $p < \infty$ and $||f||_{\infty} = \text{ess sup } |f|$.

¹This is generally a really rigid condition. Theorems about isometry are almost always easy or false.

²We don't actually need this, but analysts don't like thinking about non-Hausdorff psaces. If you ever wonder why the Hausdorff condition is there in a situation, it might be sociological prejudice.

Example 1.5. Fix $n \ge 1$, and let $C^{(n)}([0,1]) = \{f : [0,1] \to \mathbb{F} \text{ with } n\text{-fold conts. derivs.}\}$. With the norm $||f|| = \max_{-\leq k \leq n} \sup_{x} |f^{(k)}(x)|, C^{(n)}([0,1])$ is a Banach space.

Similar spaces called **Sobolev spaces**, where we do not require the last derivative to be continuous. These are useful for PDEs; people will define a Banach space of functions with the correct amount of regularity to find a solution to a PDE inside.

1.3 Bounded linear operators

Definition 1.5. A continuous linear operator $X \to X'$ is a linear operator which is continuous according to the norm topologies.

Proposition 1.4. Let $T: X \to X'$ be linear. The following are equivalent:

- 1. T is continuous.
- 2. T is continuous at $\theta (= 0_X)$.
- 3. T is continuous at some point in X.
- 4. There exists some $c < \infty$ such that $||Tx||' \le c||x||$ for all $x \in X$.

The proof is similar to the proof of the lemma from before. Because of condition 4, continuous linear operators are often referred to as **bounded**.

Definition 1.6. $\mathcal{B}(X, X')$ denotes the vector space of bounded linear operators $X \to X'$. This has the **operator norm**

$$||T|| = \inf\{c > 0 : ||Tx||' \le c||x|| \ \forall x \in X\}$$

$$= \sup\left\{\frac{||Tx||'}{||x||} : x \in X \setminus \{0\}\right\}$$

$$= \sup\{||Tx||' : ||x|| = 1\}.$$

Example 1.6. Fix a measure space (X, Σ, μ) and $1 \le p \le \infty$, and let $\varphi \in C^{\infty}(\mu)$. Then the **multiplication operator** $M_{\varphi} : L^{p}(\mu) \to L^{p}(\mu)$ sending $f \mapsto \varphi f$ is bounded:

$$||M_{\varphi}f||_p = \left(\int |\varphi f|^p\right)^{1/p} \le ||\varphi||_{\infty} ||f||_p.$$

We can choose a positive measure set where φ is close to its essential supremum and let f be the indicator of that set. This makes $||M_{\varphi}f||_p$ arbitrarily close to $||\varphi||_{\infty}||f||_p$, so we get $||M_{\varphi}|| = ||\varphi||_{\infty}$.

Example 1.7. Consider $L^p(\mu)$. Assume $K: X \times X \to \mathbb{F}$ is such that there exist constants $c_1, c_2 < \infty$ such that

$$\int |K(x,y)| d\mu(x) \le C_1 \quad \text{for μ-a.e. } y,$$

$$\int |K(x,y)| d\mu(y) \le C_2 \quad \text{for μ-a.e. } x.$$

Then the operator $M:L^p\to L^p$ defined by

$$Mf(x) := \int K(x, y) f(y) d\mu(y)$$

is well-defined, and $\|M\| \le C_1^{1/q} C_2^{1/p}$, where 1/p + 1/q = 1.

Example 1.8. Let X,Y be compact, Hausdorff spaces, and let $\tau:Y\to X$ be continuous. Then the **pullback/composition operator** $\tau^*:C(X)\to C(Y)$ given by $f\mapsto f\circ \tau$ is bounded with $\|\tau^*\|\leq 1$. If $Y\neq\varnothing$, then $\|\tau^*\|=1$.