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1 Brief Introduction to Banach Spaces

1.1 Seminorms and norms

We will denote X as a vector space over F.

Definition 1.1. A seminorm on X is a function p : X → [0,∞) such that

1. p(x+ y) ≤ p(x) + p(y)

2. p(λx) = |λ|p(x) for all x ∈ X,λ ∈ F .

We call p a norm if p(x) = 0 =⇒ x = 0 (coercivity of p).

Remark 1.1. The second property implies p(0) = 0.

A norm has an associated metric d(x, y) = p(x− y).

Definition 1.2. If p is a norm, the pair (X, p) is called a normed space. If X is complete
with respect to this metric, we call it a Banach space.

Proposition 1.1. In a normed space, addition and scalar multiplication are continuous.

Lemma 1.1. Let p, q be seminorms on X. The following are equivalent:

1. p ≤ q

2. {x ∈ X : q(x) ≤ 1} ⊆ {x ∈ X : p(x) ≤ 1}

3. {x ∈ X : q(x) < 1} ⊆ {x ∈ X : p(x) < 1}

4. {x ∈ X : q(x) < 1} ⊆ {x ∈ X : p(x) ≤ 1}

Proof. (4) =⇒ (1): :et x ∈ X be such that q(x) ≤ a. Let ε > 0 be arbitrary. Then

q

(
x

a+ ε

)
≤ a

a+ ε
< 1,

so p(x/(a+ ε)) ≤ 1. This implies p(x) ≤ a+ ε.
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Proposition 1.2. For all x, y ∈ X, |p(x)− p(y)| ≤ p(x− y).

Proof. The triangle inequality gives p(x) ≤ p(y) + p(x− y), so p(x)− p(y) ≤ p(x− y). Flip
x and y to get the negative version.

Remark 1.2. This tells us that the norm in a normed space is Lipschitz.

Definition 1.3. Two norms are equivalent if they generate the same topology.

Proposition 1.3. ‖ · ‖1 and ‖ · ‖2 on X are equivalent if and only if there are constants
c, C > 0 such that

c‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1.

Proof. (⇐= ): Given these inequalities, consider B2(x, ε) = {y ∈ X : ‖y − x‖2 < ε}. This
contains B1(x, ε/c). So the topology T‖·‖2 contains T‖·‖1 . The other inequality gives the
reverse inclusion.

( =⇒ ): Assume ‖ · ‖1 and ‖ · ‖2 are equivalent. Consider B1(0, 1). It must contain
some ‖·‖2 open neighborhood U of 0. So there is some ε > 0 such that B1(0, 1) ⊇ B2(0, ε).
This tells you that ‖ · ‖1 ≤ (1/ε)‖ · ‖2 by the lemma. We can do the reverse to get another
inequality.

Definition 1.4. (X, ‖ · ‖) and (X ′, ‖ · ‖′) are isometric1 if there is a linear bijection
A : X → X ′ such that ‖Ax‖′ = ‖x‖ for all x ∈ X. They are isomorphic if ‖·‖ and ‖A(·)‖′
are equivalent.

1.2 Examples of Banach spaces

Example 1.1. Let X be a Hausdorff2 topological space. Then let the space Cb(X) =
{bounded continuous functions X → F} equipped with the uniform/sup norm ‖f‖ :=
supx∈X |f(x)|. Then (Cb(X).‖ · ‖) is a Banach space.

Example 1.2. If I is any set with the discrete topology, the previous example gives
Cb(I) = `∞(I) = {(xi)i∈I ∈ FI : supi |xi| <∞}. If I = N, we call `∞(N) = `∞.

Example 1.3. IfX is locally compact, C0(X) = {f ∈ Cb(X) : ∀ε > 0, {|f | ≥ ε} is compact}
is a closed subspace of Cb(X). If X is compact, Cb(X) = C0(X) =: C(X).

We call c0 = C0(N) = {(xi)i ∈ FN : xi
i→∞−−−→ 0}.

Example 1.4. Let (X.Σ, µ) be a measure space. Then Lp(µ) for 1 ≤ p ≤ ∞ is a Banach
space with the norm ‖f‖p = (

∫
|f |p)1/p if p <∞ and ‖f‖∞ = ess sup |f |.

1This is generally a really rigid condition. Theorems about isometry are almost always easy or false.
2We don’t actually need this, but analysts don’t like thinking about non-Hausdorff psaces. If you ever

wonder why the Hausdorff condition is there in a situation, it might be sociological prejudice.
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Example 1.5. Fix n ≥ 1, and let C(n)([0, 1]) = {f : [0, 1]→ F with n-fold conts. derivs.}.
With the norm ‖f‖ = max−≤k≤n supx |f (k)(x)|, C(n)([0, 1]) is a Banach space.

Similar spaces called Sobolev spaces, where we do not require the last derivative to
be continuous. These are useful for PDEs; people will define a Banach space of functions
with the correct amount of regularity to find a solution to a PDE inside.

1.3 Bounded linear operators

Definition 1.5. A continuous linear operator X → X ′ is a linear operator which is
continuous according to the norm topologies.

Proposition 1.4. Let T : X → X ′ be linear. The following are equivalent:

1. T is continuous.

2. T is continuous at 0 (= 0X).

3. T is continuous at some point in X.

4. There exists some c <∞ such that ‖Tx‖′ ≤ c‖x‖ for all x ∈ X.

The proof is similar to the proof of the lemma from before. Because of condition 4,
continuous linear operators are often referred to as bounded.

Definition 1.6. B(X,X ′) denotes the vector space of bounded linear operators X → X ′.
This has the operator norm

‖T‖ = inf{c > 0 : ‖Tx‖′ ≤ c‖x‖ ∀x ∈ X}

= sup

{
‖Tx‖′

‖x‖
: x ∈ X \ {0}

}
= sup{‖Tx‖′ : ‖x‖ = 1}.

Example 1.6. Fix a measure space (X,Σ, µ) and 1 ≤ p ≤ ∞, and let ϕ ∈ C∞(µ). Then
the multiplication operator Mϕ : Lp(µ)→ Lp(µ) sending f 7→ ϕf is bounded:

‖Mϕf‖p =

(∫
|ϕf |p

)1/p

≤ ‖ϕ‖∞‖f‖p.

We can choose a positive measure set where ϕ is close to its essential supremum and let f
be the indicator of that set. This makes ‖Mϕf‖p arbitrarily close to ‖ϕ‖∞‖f‖p, so we get
‖Mϕ‖ = ‖ϕ‖∞.
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Example 1.7. Consider Lp(µ). Assume K : X×X → F is such that there exist constants
c1, c2 <∞ such that ∫

|K(x, y)| dµ(x) ≤ C1 for µ-a.e. y,∫
|K(x, y)| dµ(y) ≤ C2 for µ-a.e. x.

Then the operator M : Lp → Lp defined by

Mf(x) :=

∫
K(x, y)f(y) dµ(y)

is well-defined, and ‖M‖ ≤ C1/q
1 C

1/p
2 , where 1/p+ 1/q = 1.

Example 1.8. Let X,Y be compact, Hausdorff spaces, and let τ : Y → X be continuous.
Then the pullback/composition operator τ∗ : C(X) → C(Y ) given by f 7→ f ◦ τ is
bounded with ‖τ∗‖ ≤ 1. If Y 6= ∅, then ‖τ∗‖ = 1.
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